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Random Incidence Matrices: Moments of the Spectral
Density
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We study numerically and analytically the spectrum of incidence matrices of
random labeled graphs on N vertices: any pair of vertices is connected by an
edge with probability p. We give two algorithms to compute the moments of the
eigenvalue distribution as explicit polynomials in N and p. For large N and fixed
p the spectrum contains a large eigenvalue at Np and a semicircle of ``small''
eigenvalues. For large N and fixed average connectivity pN (dilute or sparse
random matrices limit) we show that the spectrum always contains a discrete
component. An anomaly in the spectrum near eigenvalue 0 for connectivity
close to e is observed. We develop recursion relations to compute the moments
as explicit polynomials in pN. Their growth is slow enough so that they deter-
mine the spectrum. The extension of our methods to the Laplacian matrix is
given in Appendix.

KEY WORDS: Random graphs; random matrices; sparse matrices; incidence
matrices spectrum; moments.

1. INTRODUCTION

The spectral properties of the incidence matrix of random graphs have
motivated a large number of studies over the last decades. The same
problem is described under rather different names, depending upon the
aspects that are under focus and the method of attack.

The interest in this problem has several roots in physics. The replace-
ment of complicated hamiltonians by large random matrices has proved
very efficient in the analysis of the spectral properties (culminating in level
spacing distributions) of large nuclei since the pioneering works of Wigner
and Dyson. For many properties, the details of the probabilistic laws
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governing the distribution of matrix elements are irrelevant, and there is a
very powerful notion of universality. Further motivation for considering
precisely random incidence matrices comes from several systems in con-
densed matter physics, a good example being conductors with impurities.
The pure system is modeled by a lattice, and electrons can move along
bonds. Impurities break bonds. So the hamiltonian can be approximated
by the incidence matrix of the lattice with random bonds removed. If one
considers several large samples differing by the impurity concentration c,
the following properties are observed. When c is large, only small islands
of metallic atoms exist. If c decreases to reach a certain threshold, a large
island of metallic atoms invades the system. This is classical percolation.
However it is generally believed that the system remains insulating (the
wave function of the electrons are all localized) until another threshold in
the impurity concentration. Then some delocalized states appear and the
sample is a conductor. This is called quantum percolation, a kind of
Anderson (de)localization. The analytic study of this problem on a 3d lattice
with random bonds removed is very difficult, and this motivated people to
look at the much simpler problem of a random graph. This forgets about
the spatial structure and is a kind of mean field approximation.

In the random graph model, the lattice is replaced by the complete
graph on N points: any two points are connected by a bond (by an edge
in the language of graph theory). Then, bonds are randomly removed,
leading to a random graph where only a fraction p of the initial bonds
remains. In the simplest case, bonds are removed with probability 1& p
independently of each other. The model can be made more complicated by
choosing randomly a sign for each bond present in the random graph. This
allows interferences if the probability amplitude for an electron moving on
the random graph is the product of the signs of the visited bonds.

The topology of large random graphs was investigated about four
decades ago by Erdo� s and Renyi(9) in a remarkable series of papers. The
idea is to let p vary with N. There are quite a few different regimes. The
most relevant for further physical investigations are:

v The edge-probability p remains fixed as N goes to infinity.

v The average connectivity := pN remains fixed as N goes to infinity.

In the first case, the infinite random graph is connected and in a
precise sense two infinite random graphs of given p are isomorphic with
probability 1. The second case exhibits a percolation transition at :=1.
For small : all connected components are finite, and only trees contribute
to the extensive quantities. But for :>1, a finite fraction of the points lies
in a single connected component.
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As explained above, the spectral properties of the (signed) incidence
matrix of the random graph, a symmetric matrix with 0, (\)1 matrix
elements have a great physical interest. Quite often, authors concentrate on
the case when the distribution of random signs is symmetric. Numerical
simulations and analytic (mostly supersymmetric) methods have given a
great amount of information.

For large N, fixed p and symmetric random signs, it is known that the
spectral distribution is a semicircle(21) and that the level correlations are
those of the Gaussian orthogonal ensemble (GOE), one of the four
standard universality classes governing random spectra.(20)

The finite connectivity limit has also attracted a lot of attention, under
the names of dilute or sparse random matrices. It has been argued(11, 12, 20)

that there is some value :q>1 for which delocalized eigenstates appear. So
this simple model is believed to exhibit a quantum percolation transition.

Our aim in this paper is to use combinatorial methods to compute
explicitly moments of the spectral distribution for given N and p, and in the
finite connectivity limit.

Section 2 gives a formal definition of the model and recalls some of its
topological properties. Section 3 gives the enumerative algorithm for
moments as polynomials in N and p. Section 4 concentrates on the fixed
p large N limit, first numerically (spectrum and level spacing) and then
analytically. Section 5 deals with the finite connectivity large N limit, start-
ing with numerical computations. In particular, we observe a quantitative
change in the spectrum near the eigenvalue *=0 for :&2.7. We give
qualitative arguments for the presence, location and size of delta peaks in
the spectrum. Then we derive a formal expression for the moment generat-
ing function and give a recursion relation for the moments, that we use to
control their growth. In an Appendix, we show how our algorithms can be
extended when the incidence matrix is replaced by the Laplacian matrix of
a random graph.

2. THE MODEL

For N=1, 2,..., we define the sample space 0N as follows: the elements
of 0N are the symmetric N_N matrices M=(Mij ) i, j # [1, N] , with Mi, i=0
on the diagonal and Mi, j=0 or 1 for i{ j. So 0N is a discrete space
consisting of 2N(N&1)�2 points. We observe that 0N is in one to one corre-
spondence with the set of labeled simple graphs on N vertices: to M # 0N ,
we associate the graph with vertex set [1,..., N ] and edge set E(M)=
[[i, j ] | Mij=1]. Then |E(M )|= 1

2 � i, j Mij=�i< j Mij is just the number
of edges of the graph associated to M. The word simple above refers to the
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fact that the graphs we consider do not contain multiple edges or edges
with only one vertex. In the sequel, graph always means simple graph, and
we talk indiscriminately of matrices or associated graphs.

For any p # [0, 1] we turn 0N into a probability space: the weight of
M # 0N is P(M )= pE(M )(1& p)N(N&1)�2&E(M ). To rephrase this formal
definition, the entries of M above the main diagonal are independent ran-
dom variables with the same Bernoulli (binomial) distribution: for i< j,
Mij=1 (or equivalently the vertices i and j are connected by an edge) with
probability p and Mij=0 with probability 1& p.

The quantity :#pN appears as the average connectivity,2 i.e., the
average number of vertices j connected by an edge [i, j ] to a given vertex i.
Remark that this connectivity fluctuates, in contrast to regular graphs(16)

where the connectivity is fixed for all vertices.
We can define a variant of this model by introducing a random sign,

with a parameter a # [0, 1]: for i< j, Mij=+1 with probability ap,
Mij=&1 with probability (1&a) p and Mij=0 with probability 1& p. The
even model a=1�2, which gives (Mij)=0, has been studied by some
authors.(11, 12, 20�22) If a random graph contains no loops (i.e., closed
circuits), the parameter a is not relevant because all the negative signs can
be changed in positive ones by a simple change of basis. More generally,
it is true if the graph has no ``frustrated'' loops, i.e., no loops with odd
number of negative edges. We will see later that the random spectrum is
not sensitive to a in the large N limit with fixed :. So, without explicit
indications, we will speak about the signless model defined previously,
which has a=1.

If X is any random variable on 0N , we use the notation X� for the
expectation value (or average) of X. In the next sections, we shall be inter-
ested in the asymptotic behavior of the moments of the spectral density
Tr Mk when N � �, first with p fixed and then with :=Np fixed. But first,
we recall a few fundamental facts on the topology of random graphs. The
basic reference is ref. 9; for a textbook presentation and more references,
see, e.g., ref. 6.

It is well established that this model has a percolation transition at
:=1. In the regime :<1, with probability 1 in the large N limit, all the
connected components of the random graph are finite: moreover they are
mostly trees, there is only a finite number of one loop components and no
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other connected components. For a given tree T on n vertices, the average
number of connected components isomorphic to T is

N
|Aut(T )|

:n&1e&n:+o(N ) (1)

where |Aut(G)| for a given graph G is defined as the order of its
automorphism group, formed by the permutations of the vertices that leave
its incidence matrix invariant.

In the regime :>1, Eq. (1) remains valid, but one ``giant'' connected
component (equivalent of the percolation cluster for regular lattices)
appears, with a finite fraction of the N vertices and many loops. This
fraction is an increasing function of :, covering [0, 1] when : runs from 1
to �. In the limit N large with p fixed, the random graphs is made only
with one component.

The percolation transition at :=1 is of second order. As usual, critical
exponents can be defined: by example, the biggest component has a size of
order N 2�3.

Moreover this model exhibits(20) an Anderson localization transition,
also called quantum percolation transition, at a value :q>1. In the phase
:<:q , all eigenvectors of the random incidence matrix are localized. On
the other hand, for :>:q , the eigenvectors for which the absolute value of
the energy is below a threshold E(:) becomes extended.

By studying nearest level spacing between eigenvalues, we expect an
exponential distribution of spacing in the localized phase (because the
spatial covering between different eigenvectors vanishes), and a GOE
distribution(19) in the delocalized phase. With this kind of criterion, the
location transition has been numerically estimated(11, 12) at :qr1.4. By
considering quantum percolation on a randomly diluted Cayley (or Bethe)
tree, (11, 12, 15) it has been conjectured that :q is given by :q log :q=1�2,
(leading to :qr1.4215299). We argued(3) that this value is exact for ran-
dom incidence matrices, but that loops have nevertheless some influence on
the localization properties.

So the percolation transition has a drastic effect on the topology of the
random graph and the localization transition changes the behavior of
eigenvectors of its incidence matrix, but as we shall see later, the transitions
have no obvious impact on the moments of the spectral distribution of a
random matrix. In fact, the situation may look paradoxical: many relevant
quantities for the spectrum of random incidence matrices (for instance the
moments) can be computed by looking at local structures on the random
graph. For fixed : and large N, such structures are trees with probability 1.
Hence loops that appear for :>1 seem to play no role. However, the
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presence of loops is crucial to ensure that the statistics of finite structures
varies smoothly with :. For example, if, instead of random graphs, one
considers random forests (union of trees), (4) one finds that for :<1, the
thermodynamical properties are exactly equal to the ones for the random
graph model, but the transition at :=1 (when an infinite tree appears)
changes the distribution of local structures, and for instance the moments
of the spectral distribution are not analytic at :=1 for random forests.

3. COMPUTATION OF MOMENTS

In this section, we derive Eq. (2), valid for any N and edge parameter p,
which allows, for a given k, to compute directly Tr Mk, (i.e., N times the
kth moment of the density of states), when M is a random incidence matrix
in 0N . A sum rule for p=1 is given. Then the algorithm is adapted for the
variant of the model with random signs. Finally we give a compact
formula, Eq. (6), for the generating function of moments.

3.1. Direct Computation

For any random incidence matrix M in 0N , Tr M0=N and Tr M1=0,
so we may assume that k�2. By definition, Tr Mk=�N

i1 ,..., ik=1 Mi1i2
Mi2 i3

} } }
Mik i1

. Because the diagonal matrix elements of M vanish, we can restrict
the above sum and consider only k-plet (i1 , i2 ,..., ik) such that i1{i2 ,
i2{i3 ,..., ik&1{ik , ik{i1 . We call such k-plets admissible.

So, start with an admissible k-plet I=(i1 , i2 ,..., ik). To compute
Mi1 i2

Mi2 i3
} } } M ik i1

we argue as follows: the product M i1 i2
Mi2 i3

} } } Mik i1
can

take only two values, 0 or 1. It has value 1 if and only if each factor has
value 1, that is if and only if [i1 , i2], [i2 , i3],..., [ik , i1] are edges of the
graph with incidence matrix M. From our definition of probabilities on
the space of incidence matrices, this happens with probability pl, where l is
the number of distinct pairs among [i1 , i2], [i2 , i3],..., [ik , i1]. Obviously,
l depends on I.

If we could find an efficient way to count the number of admissible
k-plets I with given l, the problem would be solved. We have not been able
to do so. However, there is a simple way, which we now expose, to group
together families of admissible k-plets that are guaranteed to have the same l.

Fix a k-plet W=(v1 ,..., vk) of elements of [1,..., k] with the following
properties: (i) v1{v2 , v2{v3 ,..., vk&1{vk , vk{v1 , and (ii) if v;>1, there
is a ;$<; such that v;$=v;&1. Such a k-plet will be called a normalized
k-plet in the sequel.

The first condition is almost the definition of an admissible k-plet, the
only difference being that the members are in [1,..., k], not [1,..., N ]. The
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second condition says that the order of appearance of elements of [1,..., k]
in the sequence (v1 ,..., vk) is the natural order. Because of these two condi-
tions, v1=1 and v2=2 in any normalized k-plet, but v3 could be 1 or 3.

By condition (ii), the integers appearing in W build a set of the form
V=[1,..., n] for a certain n�k. Let E be the set whose elements are the
(distinct) pairs among [v1 , v2], [v2 , v3],..., [vk , v1].

Now choose an injective map _ from V to [1,..., N ]. The number
of such maps is N n

� #N(N&1) } } } (N&n+1). Then the sequence I=
(_(v1),..., _(vk)) is an admissible k-plet by the injectivity of _ and property
(i) of the sequence W. Moreover, for the same reasons, the number l of
distinct pairs among the k pairs [_(v1), _(v2)], [_(v2), _(v3)],..., [_(vk),
_(v1)] is exactly |E |, the number of elements of E. This number depends
on W, but not on _.

More precisely, there is a one to one correspondence between admissible
k-plets I and pairs (W, _). Note that the source of _ depends on W.

The bijection involves a simple but useful general algorithm, which we
call the ``label and substitute algorithm.'' We use it several times in the
sequel. If (O, O$, O",...) is any finite or infinite list of items (some items can
be repeated), one can label the items in order of first appearance. This
means that the first item receives label 1, then the next item different from
the first one receives label 2 and so on. This gives a one to one map, the
``labeling map.'' After that, by replacing each item in the list by its label,
one obtains a sequence of integers, the ``substitution sequence.'' It has the
property that the first term is 1 and that if integer i+1�2 appears as a
term, then integer i has appeared before. Note that this new sequence is
invariant if we apply the ``label and substitute algorithm'' to it. Note also
that the knowledge of the ``labeling map'' and the ``substitution sequence''
allows to reconstruct the original sequence. Let us give an example. The
list (eat, work, eat, sleep, work, eat, work, sleep) leads to the ``labeling
map'' (eat � 1, work � 2, sleep � 3), and to the ``substitution sequence''
(1, 2, 1, 3, 2, 1, 2, 3).

If i=(i1 , i2 ,..., ik) is an admissible k-plet, we apply the ``label and
substitute algorithm.'' Then _ is the inverse of the ``labeling map'' of I and
W is the ``substitution sequence'' of I. The properties of I making it an
admissible k-plet and the definition of the ``label and substitute algorithm''
ensure that W is a normalized k-plet.

Written symbolically, this means that

:
I

=:
W

:
_

where the sum over I is over admissible k-plets, the sum over W is over
normalized k-plets, and the sum over _ is over injective maps as described
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above. Inserting Mi1 i2
Mi2 i3

} } } Mik i1
on both sides of this identity, we obtain

our first important formula:

Tr Mk=:
W

N |V | p |E | (2)

where V and E are functions of W as defined above. In this formula, the
N and p-dependence are completely explicit. For finite k and large N this
is clearly useful because the W 's are defined independently of N and p.

It is not difficult in principle to enumerate normalized k-plets in
standard lexicographic order, hence in particular in order of increasing |V |,
and then compute for each normalized k-plet the value of |E |.

We know that

Tr M0=N

and

Tr M1=0.

For k=2, the only sequence is (1, 2), so

Tr M2= pN 2
� .

For k=3, the only sequence is (1, 2, 3), so

Tr M3= p3N 3
� .

For k=4, the sequences are (1, 2, 1, 2), (1, 2, 1, 3), (1, 2, 3, 2) and
(1, 2, 3, 4), so

Tr M4= p4N 4
� +2p2N 3

� + pN 2
� .

For k=5, the sequences are (1, 2, 1, 2, 3), (1, 2, 1, 3, 2), (1, 2, 1, 3, 4), (1, 2,
3, 1, 2), (1, 2, 3, 1, 3), (1, 2, 3, 1, 4), (1, 2, 3, 2, 3), (1, 2, 3, 2, 4), (1, 2, 3, 4, 2),
(1, 2, 3, 4, 3), and (1, 2, 3, 4, 5), so

Tr M5= p5N 5
� +5p4N 4

� +5p3N 3
� .

For k=6, one finds 41 sequences leading to

Tr M6= p6N 6
� +(3p6+6p5) N 5

�

+(9p5+6p4+5p3) N 4
� +(4p3+6p2) N 3+ pN 2

� .
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For k�7, by counting the sequences with |V |�k&2,

Tr M k=pkN k
� +{\k2

�

2
&2k+ pk+kpk&1= N k&1

+{\k4
�

8
&

5k3
�

6
+k2

� +5k+ pk+\k3
�

2
&k2

� &6k+ pk&1

+\k2
�

2
+k+ pk&2= N k&2+O(N k&3)

=pkN k+(&2kpk+kpk&1) N k&1

+{(k2+4k) pk&(k2+5k) pk&1+
1
2

(k2+k) pk&2= N k&2

+O(N k&3).

With ten days of computation on a workstation, we have obtained the
number of normalized k-plets with given |V | and |E | up to k=18. The
results are available upon request to the authors.

3.2. Sum Rule for p=1

We have checked our enumeration against a simple sum rule. We put
p=1 and sum over |E |. In this case, with probability 1, the random graph
becomes complete and the matrix M is equal to J&Id, where Id is the
N_N identity matrix and J is the N_N matrix with all entries equal to 1.
But J&Id has only two eigenvalues, N&1 with multiplicity 1 and &1 with
multiplicity N&1. So, for p=1,

Tr Mk=Tr(J&Id )k=(N&1)k+(N&1)(&1)k.

The general formula reduces to

(N&1)k+(N&1)(&1)k=:
W

N |V |=:
n

N n
� Dk, n

where Dk, n is the number of normalized k-plets W with |V |=n. Going to
generating functions, the left-hand side gives

:
k, N

((N&1)k+(N&1)(&1)k)
xN

N !
tk

k !
=e&t(exet

+ex(x&1))
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while the right-hand side gives

:
k, N

xN

N!
tk

k !
:
n

N n
� Dk, n=ex :

k, n

Dk, n xn tk

k !
.

Hence

:
k, n

Dk, nxn tk

k !
=e&t(ex(et&1)+x&1).

By using any symbolic computation software, the computation of all the
Dk, n 's up to, say, k=50 takes only a few seconds. We can express Dk, n in
terms of standard Stirling numbers of the second kind, Sk, n . We shall meet
them again in Section 5.5. They can be characterized by the relation xk=
�n Sk, n xn

� . Using the trick Tr Mk+1+Tr Mk=N(N&1)k=�n Sk, nN n+1,
one finds Dk+1, n+Dk, n=Sk, n&1 , which gives for k�1

Dk, n= :
k&1

r=1

(&1)k&1&r Sr, n&1 .

For x=1, we get the generating function of Dk=�n Dk, n , the total
number of normalized k-plets. That is e(et&1&t) and we recognize that the
Dk are so-called generalized Bell numbers.(23) To give an idea of the size
of the computations of the first moments, the values of Dk for k=0,..., 18
are 1, 0, 1, 1, 4, 11, 41, 162, 715, 3425, 17722, 98253, 580317, 3633280,
24011157, 166888165, 1216070380, 9264071767 and 73600798037. With our
combinatorial interpretation of Dk , it is clear that Dk�k !. On the other
hand, the saddle point evaluation shows that log Dk B k(log k+o(log k)),
confirming that the growth of the computation is extremely rapid.

3.3. Model with Random Signs

The above calculations could be adapted to the variant of the model
(see Section 2) defined by a parameter a # [0, 1] where the non-zero
elements of the random matrix are +1 with probability a and &1 with
probability 1&a. Equivalently the edges of the random graph are dressed
with a random sign \1.

For an admissible k-plet I=(i1 , i2 ,..., ik), we find Mi1 i2
Mi2 i3

} } } Mik i1
=

ple( pb) lo= plb lo where b=2a&1 is the sign asymmetry, l=le+lo is the
number of distinct pairs among [i1 , i2], [i2 , i3],..., [ik , i1] and le (resp. lo)
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the number of those which are repeated an even (resp. odd) number of
times. So, Eq. (2) becomes

Tr Mk=:
W

N |V | plblo (3)

and the first moments can be exactly computed by enumerating all the
normalized k-plets:

Tr M2=pN 2
� ,

Tr M3=p3b3N 3
� ,

Tr M4=p4b4N 4
� +2p2N 3

� + pN 2
� ,

Tr M5=p5b5N 5
� +5p4b3N 4

� +5p3b3N 3
� ,

Tr M6=p6b6N 6
� +(3p6b6+6p5b4) N 5

�

+(9p5b4+6p4b4+5p3) N 4
� +(4p3+6p2) N 3

� + pN 2
� .

Of course, the case a=1 gives previous results. If we concentrate on the
even model with a=1�2 (for which b=0), we see that the summation over
random signs keeps only the walks for which all the edges are visited an
even number of times. Consequently for all the odd moments, Tr M2k+1

=0 and the density of states is a symmetric distribution.

3.4. Generating Function

While very convenient for explicit enumeration, the formula in Eq. (2)
is not always convenient for theoretical arguments. So we reformulate it.

Starting from a normalized k-plet W, we have defined two sets V and E.
Recall that V is of the form [1,..., n] for some n and that E is made of
pairs of distinct elements of V. These are exactly the data for a labeled
graph with vertex set V and edge set E. In this framework, W can be inter-
preted as a closed walk on the graph visiting all edges (this implies in
particular that the graph is connected), the order of first visit to a vertex
respecting the natural order: W starts at vertex 1, and its first visit to vertex
2 occurs before its first visit to vertex 3 and so on. Note that in this
formulation, many labeled graphs do not appear (for example, the labeled
graphs for which vertices 1 and 2 are not linked by an edge). To resume,
only some labeled graphs and some walks visiting all edges appear. On the
other hand, take an unlabeled connected graph G isomorphic to the one
defined by the normalized sequence W. Clearly, it is possible to label it in
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such a way that W describes a closed walk on G visiting all edges. This
labeling can be achieved exactly in |Aut(G)| (the order of the auto-
morphism group of G, see Section 2) ways. Indeed, two distinct labelings
have to describe a non-trivial automorphism of G because W determines
completely a labeled graph isomorphic to G. Written symbolically, this
means that

:
W

=:
G

1
|Aut(G)|

:
W(G)

where on the left-hand side the summation is over normalized k-plets
whereas on the right-hand side the summation on G is over isomorphism
classes of connected graphs and the summation on W(G) is over walks on
G of length k visiting all edges of G. So, the fundamental identity can be
rewritten as

Tr Mk=:
G

1
|Aut(G)|

N |V(G)| p |E(G)|Wk(G) (4)

where the sum over G is over isomorphism classes of connected graphs,
Aut(G) is the automorphism group of G, V(G) and E(G) are respectively
the vertex set and the edge set of G and Wk(G) is the number of closed
walks of k steps on G visiting all edges of G. Note that graphs with
|V(G)|>N or |E(G)|>k do not contribute. Although Eq. (4) was estab-
lished for k�2, it is valid for k�0. For k=1, as a walk with only one step
cannot be closed, W1(G)=0 and Tr M=0. For k=0, as a walk with zero
steps is closed and visits one vertex and zero edges, W0(G)=0 for every
graph except for v, the graph with one vertex. For this graph, W0(v)=1,
leading to Tr M0=N. By convention, the empty graph is not counted as
connected, so it does not appear in Eq. (4).

The above formula can be used to build a generating function by sum-
ming over k. On the left-hand side �k�0 *k Tr Mk=Tr(1&*M )&1 is a
rational function of * because it is the average of a finite number (namely
2N(N&1)�2) of rational functions. To deal with the right-hand side, define
WG(*)=�k *kWk(G). This counts closed walks on G of arbitrary length
visiting all edges of G. Were it not for the last constraint, life would be easy
because the generating function for the closed walks on G of arbitrary
length is simply Tr(1&*G)&1 (in this formula and in later algebraic
expressions involving graphs and traces, we use a convenient abuse of
notation: G denotes at the same time the graph and the incidence matrix
obtained by labeling it, any choice of labeling leads to the same traces). To
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suppress walks that do not visit all edges, we can use inclusion-exclusion
to obtain:

WG(*)=Tr
1

1&*G
& :

G (1)

Tr
1

1&*G(1) } } } (&) l :
G (l )

Tr
1

1&*G(l ) } } } (5)

where �G (l ) is the sum over all subgraphs of G obtained by deleting l edges,
so this formula ends at l=|E(G)|. This expresses WG(*) as a finite sum of
rational functions, so WG(*) is a rational function. To summarize, we have
proved an identity between rational functions (so that it is possible to
assign values to *):

Tr
1

1&*M
=:

G

1
|Aut(G)|

N |V(G)| p |E(G)|WG(*). (6)

4. FIXED EDGE PROBABILITY P

In the large N limit with p fixed, Fu� redi and Komlo� s(13) (following
work by Wigner, (26) Arnold(1) and Juha� sz(17)) have given a detailed
description of the spectrum: it consists N&1 ``small'' eigenvalues which
after a rescaling by a factor - p(1& p) N build up a semicircle distribution
of radius 2 and one large eigenvalue (the Perron eigenvalue) whose
distribution is Gaussian with average pN+(1&2p) and finite variance
2p(1& p). The appearance of this isolated eigenvalue is due to the non-
vanishing average of the matrix elements.

We have used this theorem to check our numerical simulations and
our algorithm for computing the moments. We have also computed
numerically level spacings. They obey the Gaussian Orthogonal Ensemble
statistics with good accuracy.

4.1. Monte-Carlo Simulations

Monte-Carlo simulations consist in generating a lot of incidence
matrices of random graphs, computing and studying their spectra.

A matrix is obtained with the following procedure. It is a symmetric
matrix M of size N_N. Its diagonal elements are set to 0. Its non-diagonal
elements Mij=Mji (with i{ j ) represent the edges of the graph. They are
randomly and independently chosen: their values are 1 with probability p
and 0 with probability 1& p, where p is a fixed parameter.

As the matrix is symmetric, it is diagonalizable and all its eigenvalues
are real numbers. They are computed using the appropriate routine in Nag
library. This procedure is repeated with several random matrices. As we are
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interested by the asymptotic behavior when N is large, we compare dif-
ferent sizes of matrix: N=1000, 2000 and 4000, with 40, 20 and 10 matrices
respectively. So, for each case, the statistical study is done over 40000
random eigenvalues.

When the edge probability p is fixed, in the spectrum of a given
matrix, we must make the distinction between its largest eigenvalue and
the N&1 others. Indeed, all the elements are non-negative (Mij�0).
Moreover, when N is not too small, the random graph is connected and the
matrix is irreducible. Then, the Perron�Frobenius theorem(14) assures that
the eigenvalue with the largest modulus (the Perron eigenvalue) is non-
degenerate, positive, and that the elements of the corresponding eigenvector
are all positive.

Numerical observations show with great accuracy that the average of
this Perron eigenvalue is pN, plus a finite correction which depends on p.
Furthermore its variance (i.e., the square of the width of its distribution) is
also finite et depends on p. Indeed, for large N, the Perron eigenvector is
equal to (1 } } } 1)T, plus small fluctuations, and the eigenvalue is about pN.

As the rest of the spectrum has a large N behavior which is different
we eliminate, in the rest of this section, the largest eigenvalue of each
matrix. On Fig. 1, histograms of eigenvalues for several values of p are
shown. To allow comparison, the eigenvalues (x-axis) have been divided by
- p(1& p) N , and the y-coordinates have been scaled in order to normalize
the area of each histogram. We see clearly that the asymptotic shape of

Fig. 1. Histograms of spectra of random graph incidence matrices, for several sizes N of
matrices and several edge parameters p. The x-axis is rescaled by - p(1& p) N and the area
of each histogram is normalized. All the curves coincide with the semicircle of radius 2, drawn
with a solid curve.
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the rescaled distribution is a semicircle of radius 2. In particular, only
the variance (or the width) of the distribution depends on N and p,
but the shape remains the same. So already for N&1000 the agreement
with the large N estimates in the Fu� redi�Komlo� s theorem is very good.

The nearest neighbor spacing distribution is commonly studied to
observe fluctuations in random spectra. If (*1 , *2 ,..., *N) are the eigenvalues
in ascending order of a given random incidence matrix, we define the
normalized spacings as

si=
1
4 �

N
p(1& p)

(*i+1&*i )

in order to have (s) =1, by omitting the last spacing sN&1 which involves
the Perron eigenvalue. On Fig. 2, histograms of normalized spacings are
shown. We see clearly that they have the same shape. This indicates that
the large N behavior is independent of p.

To allow the comparison with the spacing distribution of the Gaussian
Orthogonal Ensemble (GOE) of random matrices, we use the ``Wigner
surmise''

q0(s)=
?
2

s exp \&
?
4

s2+ .

It is considered to be an excellent approximation of the GOE distribu-
tion.(19) However, a direct comparison between the Monte-Carlo histograms

Fig. 2. Histograms of normalized nearest neighbor spacings in spectra of random graph
incidence matrices, for several sizes N of matrices and several edge parameter p. All the curves
coincide with the GOE spacing distribution distorted by the semicircle law, drawn with a
solid curve.
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and q0(s) would give bad results. Indeed, q0(s) describes the distribution of
the locally normalized spacings N\(*i )(*i+1&* i ), where \(*) is the eigen-
value probability distribution. So the probability distribution of si=
N(*i+1&* i ) is

q(s)=| d* \(*)2 q0(\(*) s).

By taking the semicircle distribution \(*)=4�? - 1&4*2 with a diameter
1 in order to have (s)=1,

q(s)=
6
?

s exp \&4
?

s2+ F \1
2

, 3,
4
?

s2+
=

12
?

s exp \&4
?

s2+ :
�

k=0

1 (k+1�2)
1 (1�2)

1
k!(k+2)! \

4
?

s2+
k

where F(1�2, 3, z) is a generalized hypergeometric function. On Fig. 2, we
see that the Monte-Carlo simulations coincide with the function q(s),
giving good evidence that the incidence matrices of random graphs are, as
expected, in the universality class of GOE.

4.2. Perturbative Expansion for the Perron Eigenvalue

We retrieve quickly the main features of the distribution of the Perron
(i.e., largest) eigenvalue via a perturbative expansion. By definition,
M� = p(J&Id ) where Id is the N_N identity matrix and J is N_N matrix
with all entries equal to 1, that is, N times the projector on |0) =
(1�- N )(1 } } } 1)T. So |0) is the Perron eigenvector of M� with eigenvalue
p(N&1). We define D=M&M� . Simple manipulations(25) show that an
eigenvalue * of M whose eigenspace is one-dimensional and not
orthogonal3 to |0) satisfies

1= pN (0|
1

*+ p&D
|0).

The perturbative expansion in D gives for the Perron eigenvalue

*= p(N&1)+(0| D |0)+
1

pN
((0| D2 |0) &(0| D |0) 2)+ } } } .
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Explicit computation yields

(0| D |0) =0

(0| D2 |0) &(0| D |0)2=p(1& p)(N&1)(N&2)�N.

Hence

*k= pkN k {1+
k

pN
(1&2p)+O \ 1

N 2+= .

This is enough to show that the distribution of the Perron eigenvalue
has average *� = pN+1&2p+O(1�N ) and finite width *2&*� 2=O(1). Let
us call tr$ Mk the k th moment of the distribution of other eigenvalues,

tr$ Mk#
1

N&1
(Tr M k&*k).

Comparison of our formulae for Tr Mk and *k leads to

tr$ M=& p+2p�N+O(1�N 2),

tr$ M2=p(1& p) N+ p(3p&2)+O(1�N ),

tr$ M3=&3p2(1& p) N+O(1),

tr$ M4=2[ p(1& p)]2 N 2+O(N ),

tr$ Mk=O(N k&3) for k�5.

This is of course consistent with ref. 13. Note however that for the
Laplacian matrix (see Appendix A) the hypotheses of the theorem are not
fulfilled because the diagonal elements are correlated to the rest of the
matrix and have a variance of order N. And indeed, the Laplacian has an
entirely different spectral distribution.

4.3. Comparison with the Model with Random Signs

The random sign model defined in Section 2 (where Mij=+1 with
probability ap, &1 with probability (1&a) p and 0 with probability 1& p)
is also covered by the results in ref. 13. If a{1�2, the ``small'' eigenvalues
build a semicircle of radius 2 after rescaling by - p(1&b2p) N (where, as
before, b=2a&1), and the large eigenvalue has a Gaussian distribution
with average (N&1) bp+(1&b2p)�b and variance 2p(1&b2p).
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As another check of our formulae, we give a short proof of the semi-
circle distribution for the symmetric (a=1�2) random sign model, where
Mij=\1 with probability p�2 and 0 with probability 1& p. To compute
Tr Mk from Eq. (3), we must keep in the summation only the W 's for
which the edges are repeated an even number of times. Then for the odd
moments, Tr M2k+1=0. For even moments, Tr M 2k, the maximal number
of distinct edges in W is k. Moreover in the large N limit with p fixed, we
retain the W 's with the maximal number of vertices. This maximum is k+1
and is obtained with W 's associated to rooted planar trees with k edges, as
explained later in Section 5.5. Then, for a=1�2,

1
N

Tr M2k=CkpkN k+O(N k&1)

where Ck are Catalan numbers, Ck=(2k)!�[k! (k+1)!]. As the Catalan
numbers are the moments of the semicircle law of radius 2, this shows that
the density of states is the semicircle law of radius 2 - pN .

5. FIXED AVERAGE CONNECTIVITY :

In this section, we present results for the large N limit with := pN
fixed. After displaying numerical observations, we prove that the density of
states has an infinity of delta peaks for any :. Then we explain how to com-
pute the 2k th moment of the density of states which is a polynomial in :
of degree k. Finally, we give bounds for the coefficients of these polyno-
mials and use the bounds to show that the spectrum is determined by the
moments.

5.1. Monte-Carlo Simulations and Observations

In Section 2, we have defined a variant of the model where the non-
zero elements of the random matrix have a random sign: +1 with prob-
ability a and &1 with probability 1&a. We will prove in Section 5.3 that
in the large N limit with : fixed, the moments of the density of states are
independent of a. Then it is expected that the density of states evaluated by
our Monte-Carlo simulations are very similar for those equivalently
obtained(11, 12) for the even model with a=1�2. However as we will clarify
some points, we have repeated these simulations.

Monte-Carlo simulations have been done with the same procedure as
in Section 4.1. We have seen that, for a fixed edge probability p, the shape
of the distribution of eigenvalues is a semicircle. But when p becomes of
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order 1�N, the distribution gets strongly distorted. To compare different
sizes N, let us fix := pN. It is the average number of 1's in a given row (or
column) of the random matrix. For the graph, it is the averaged connec-
tivity (i.e., the average number of neighbors of a given vertex).

On Fig. 3, histograms of eigenvalues for several values of : are shown.
For each value of :, three sizes of matrices, N=1000, 2000 and 4000, have
been simulated with 40, 20 and 10 matrices respectively. So, for each case,
the statistical study is done over 40000 random eigenvalues. For fixed :,
the three curves are superposed, in the limits of Monte-Carlo fluctuations.
So we can consider that we observe the asymptotic distribution d\: for
large N, which depends only on :. To allow comparison between different :'s,
the eigenvalues (x-axis) have been divided by - :, and the y-coordinates
have been scaled in order to normalize the area of each histogram.

When : is small, we see a forest of delta peaks. This has been
previously observed in other models of sparse random matrices.(10, 18) Their
heights are not representative with this kind of histogram because they

Fig. 3. Histograms of spectra of random graph incidence matrices, for different sizes N of
matrices and probability parameter p=:�N, with : fixed. The x-axis is rescaled by - : and
the area of each histogram is normalized. For comparison, the semicircle is drawn for :=8.

319Random Incidence Matrices: Moments of the Spectral Density



File: 822J 429220 . By:XX . Date:15:02:01 . Time:07:54 LOP8M. V8.B. Page 01:01
Codes: 2506 Signs: 2030 . Length: 44 pic 2 pts, 186 mm

Fig. 4. Cumulative histograms of random graph incidence matrices, for different sizes N of
matrices and probability parameter p=:�N, with :=1. Each vertical step represents a delta
peak. As the three curves are quite similar, they are shifted along the x-axis to be more visible.
The largest step is at x=0.

depend on the width of the bin, chosen arbitrarily. To give a correct
representation of the importance of delta peaks, the cumulative distribution
function (i.e., the integral of the distribution from &�) is better. We plot
it for :=1 on Fig. 4: each vertical step corresponds to a delta peak, with
a weight equal to the height of the step. As the heights are comparable
between the different sizes, the delta peaks survive in the limit N � �.

We observe that for any : the bigger delta peaks are, in order of impor-
tance, at x=0, \1, \- 2, \(- 5\1)�2 (golden mean), \- 3, \- 2\- 2,
etc. These values can be recognized as eigenvalues of small trees.

When : increases, the heights of delta peaks decreases, but their
positions along the x-axis do not move (before the - : rescaling). With this
kind of histogram, when a delta peak becomes too small, it seems to disap-
pear because it is drowned in the rest of the distribution. But we will show
that the spectrum has an infinity of delta peaks for any :. For large values
of :, the shape is close to the semicircle, obtained when p is finite (which
corresponds to the limit :=�).

In Section 2, we have seen that the topology of random graphs has a
percolation transition at :=1. But, this transition seems without effects for
the distribution of eigenvalues: on Fig. 3, distribution for :=0.8, 1 and 1.2
are qualitatively similar. In particular, we have checked that the height of
the delta peak at x=0 is regular around :=1. The same remarks apply to
the localization transition, conjectured in refs. 11 and 12 to be for :r1.4.

In contrast, we observe a change of behavior between :=2.6 and 2.8,
for the distribution d\: in the vicinity of x=0. For :�2.6 (resp. �2.8),
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d\:(*) decreases (resp. increases) when * goes to 0+. It is difficult to say
if the limit d\:(*) when * goes to 0+ is 0 or not in the small : phase, and
� or not in the large : phase. This transition seems to be related to a
transition at :=e, where the second derivative of the height of delta
peak at x=0 as function of : is discontinuous.(3) Unfortunately, this
discontinuity is too small to be seen in our Monte-Carlo simulations.

We have also studied the distribution of nearest neighbors spacings.
Our conclusions are similar to those of Evangelou and Economou:(11, 12)

for small :, the distribution numerically coincides with an exponential, and
for large : with the GOE law. In the vicinity of the localization transition,
:r1.4, the distribution interpolates between these two forms. On the other
hand, we have not been able to reproduce results(11, 12) concerning the
singularity of the spectral distribution as * goes to 0.

5.2. Existence of Delta Peaks

In this section, we explain that, for any value of :, the distribution has
an infinite number of delta peaks. More precisely, we show that they are
delta peaks at all eigenvalues of finite trees. However their heights are
exponentially decreasing functions of :; most of them are hidden in simula-
tions by the statistical noise and the distribution seems to be quite smooth
for large :.

The delta peaks at tree eigenvalues have, at least, two origins:(18) the
small connected components, which are trees, and small trees grafted on
the giant component (percolation cluster).

The random incidence matrix is block-diagonal, with one block per
each connected component. As shown by Eq. (1), the average number of
times a given tree T appears as a connected component of the random
graph is proportional to N. So, for any eigenvalue of the incidence matrix
of any tree with n vertices, a contribution of height :n&1e&n:�|Aut(T )| to
the corresponding delta peak appears. These eigenvalues are algebric
numbers, i.e., solutions of a polynomial equation with integer coefficients of
degree at most n. The height (but not the position) of the peak depends on :.
The height decreases exponentially with n, so only eigenvalues of small
trees appear with repetitions in Monte-Carlo simulations.

Furthermore, for :>1, even the giant component contributes to delta
peaks. To explain why, we first define grafting. Let G=(V, E ) be a graph,
G$=(V$, E$) and G"=(V", E") be two subgraphs of G, and V0 be a subset
of V. We say that G is obtained by grafting G$ on G" along V0 if V0=V$ & V"
and E is the disjoint union of E$ and E".

If this is the case, suppose moreover that the incidence matrix of G$
has an eigenvector ,$ (with eigenvalue *) whose components on V0 are 0.
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Fig. 5. A symmetric graft on the giant component gives delta peaks in the distribution of
eigenvalues.

Then the vector , obtained by extending ,$ to V by 0 is an eigenvector of
G with the same eigenvalue *.

Now if G is the giant component of a random graph, if G$ has a finite
number of vertices and is connected, then G$ is a tree with probability 1.
Indeed, it is known(6) that finite connected subgraphs with loops are sup-
pressed by powers of N &1, even if they belong to the giant component. For
a given tree T, the average number of times G can be obtained by grafting
a subgraph G$ isomorphic to T on a subgraph G" along n points is of order
N: |E(T )|e(n&V(T )) :�|Aut(T )| for large :. So we have shown that if T has an
eigenvector (with eigenvalue *) vanishing on some vertices, * appears as a
delta peak in the spectrum of the giant component.

Now if * is an eigenvalue of the incidence matrix of a tree T $ with eigen-
vector ,$, then * also appears as an eigenvalue of some tree T whose asso-
ciated eigenvector vanishes on some vertices of T: for instance, choose a
vertex v on T $, take two copies T $+ and T $& of T $ and built a tree T by join-
ing v+ and v& to a new vertex v0 . Then ,=(,$, 0, &,$) on V(T )=V(T $+)
_ [v0] _ V(T $&) is an eigenvector of T with eigenvalue * and this one can
be grafted along v0 (see Fig. 5). So we have shown that the giant component
contributes to delta peaks in the spectrum at all eigenvalues of finite trees.

To summarize, at any eigenvalue of any finite tree, a delta peak
appears in the distribution, with contributions both from small connected
components and from the giant component (for :>1). We do not know if
delta peaks appear at other positions, due to other mechanisms. On the other
hand, we have not been able to prove that for :>1 the giant component
gives a continuous part in the distribution of eigenvalues.

5.3. General Considerations

From an analytical viewpoint, we use Eq. (2) which we rewrite as

Tr Mk=:
W

N |V |N &|E |: |E |
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and recall that on the right-hand side, E and V can be interpreted as
vertices and edges of a connected graph. It is then an elementary topologi-
cal fact that |E |�|V |+1, with equality if and only if the graph is a tree.
For fixed k, the possible graphs form a finite set, and there is no difficulty
to take the large N limit:

+k# lim
N � �

1
N

Tr Mk=:
W

: |E |

where the sum of over normalized k-plets W associated to trees. The exist-
ence of the N � � limit above is a strong indication of the existence of a
limit eigenvalue probability density d\: , for which +k is just the usual k th
moment.

In the same way, in the large N limit with fixed :, Eq. (6) becomes

lim
N � �

1
N

Tr
1

1&*M
=:

T

1
|Aut(T )|

: |E(T )|WT (*) (7)

where the sum runs over the trees T. For trees, we observe that the
computation of WT (*) using Eq. (5) can be simplified: the sum over all
subgraphs of T can be reduced(2) to the sum over all subtrees obtained by
deleting leaves of T.

The dominance of trees here and in Section 2 has a similar origin.
Though the giant component contains of order N loops, only a finite num-
ber of them are finite: as already noticed before, a finite connected induced
subgraph of a random graph at fixed : is a tree with probability 1.

On a tree, it takes an even number of steps to make a closed walk, and
+k=0 for odd k. This elementary observation implies in fact that trees can
be bicolored, and by standard argument, this shows that trees have a sym-
metric spectrum (see Section 5.6 for an application of this property). As
random graphs look locally like trees, it is not too surprising that they also
have a symmetric spectrum (this is of course true only for N � �). Later
we shall show that the moments +k determine the distribution. Then +k=0
for odd k implies that the distribution of eigenvalues is indeed symmetric.

For the even moments, +2k is a polynomial of : with degree k,

+2k=:
l

Ik, l : l

where Ik, l is the number of normalized 2k-plets W associated to trees with
l edges.

If we consider the variant of the model with random signs (see Section 2),
the same arguments apply. In particular, only W's associated to trees

323Random Incidence Matrices: Moments of the Spectral Density



File: 822J 429224 . By:XX . Date:15:02:01 . Time:07:55 LOP8M. V8.B. Page 01:01
Codes: 2704 Signs: 2162 . Length: 44 pic 2 pts, 186 mm

contribute to the sums. But in this case, any edge is visited an even number
of times and, following Eq. (3), +2k does not depend to a. Then, in the large
N limit with : fixed, the parameter a is irrelevant.

5.4. Recursion Relation for Ik, l

Consider a normalized 2k-plet W associated to a tree T, with k�1.
Recall that W induces a walk covering T, hence a labeling of T (vertices are
labeled in order of their appearance in the walk). Let r be the root of T,
the vertex labeled 1, where the walk starts. There is always an edge between
vertices labeled 1 and 2. If the edge [1, 2] is cut, the tree breaks in two
trees, T $ whose root r$ is vertex 2 and T" whose root r" is vertex 1 (note
that r"=r). The tree T can be seen as trees T $ and T" linked by the edge
[r", r$], as shown in Fig. 6. Note that T $ and T" are arbitrary trees. They
could for instance consist of a single vertex.

The walk W can be decomposed accordingly: the walker starts at
vertex r", walks along edge [r", r$], makes a closed walk on T $ (made
possibly of zero steps), walks along edge [r$, r"], makes a closed walk on
T" (made possibly of zero steps), and so on and so forth, and finally comes
back to vertex r", after covering T $ and T". Let 2k$ (resp. 2k") be the
number of steps made on T $ (resp. T"). We can glue the small pieces of
walks on T $ (resp. T") together into a single walk, covering T $ (resp. T")
because W covers T. This walk is a sequence of vertices on T $ (resp. T"),
and the ``label and substitute algorithm'' applied to this sequence leads to
a normalized 2k$-plet W $ (resp. to a normalized 2k"-plet W").

Now, the 2k-plets W giving rise to the same pair (W $, W") are easily
counted. They differ from each other by the organization of the steps on
edge [r$, r"]. There are 2m� #2(k&k$&k") such steps. If m$ (resp. m") is
the number of returns of W $ (resp. W") at vertex r$ (resp. r"), there are
exactly ( m$+m� &1

m� &1 ) (resp. ( m"+m� &1
m� &1 )) possibilities to insert the m� steps from

r$ to r" (resp. the m� steps from r" to r$). Note that the &1 in the above
counting comes from the fact that the last (resp. first) step from r$ to r"

Fig. 6. Decomposition of T.
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(resp. from r" to r$) is fixed. The total number of visits at vertex r" is
m� +m", the first term counting visits from the edge [r$, r"] and the second
visits from T". If T $ (resp. T") has l $ (resp. l") edges, T has l=l $+l"+1
edges. To summarize, the number Ik, l, m of normalized 2k-plets associated
to trees with l edges and containing m times the number 1 satisfies the
following recursion relation, for k�1

Ik, l, m=: Ik$, l $, m$Ik", l", m" \m$+m� &1
m� &1 +\m"+m� &1

m� &1 + (8)

where the sums runs over non-negative indices k$, k", l $, l", m$, m" and m�
with relations k$+k"+m� =k, l $+l"=l&1 and m� +m"=m.

Note that Ik, l, m vanishes if l>k (every edge is visited at least twice
for a covering closed walk on a tree), if m>k (two successive terms in a
normalized 2k-plet are distinct, so 1 cannot appear more than k times) and
if m=0 unless k=l=0 (every non void normalized 2k-plet contains 1).
Finally, I0, 0, 0=1. This gives more than enough boundary conditions to
compute the Ik, l, m recursively.

On a workstation, a day of symbolic computation with this formula
gives the Ik, l, m as integers up to k=50. With 12 digits precision, a Fortran
program goes to k=120 in about the same time. The results are available
upon request to the authors.

Note that the index m is not directly relevant for the computation of
moments, because Ik, l=�m Ik, l, m , but we have not been able to obtain a
closed recursion without the index m. Coefficients Ik, l for small k and l are
given in Table I.

Table I. The Number of Normalized 2k-Plets Associated to Trees with
l Edges

k"l 1 2 3 4 5 6 7 8 9 10

1 1
2 1 2
3 1 6 5
4 1 14 28 14
5 1 30 110 120 42
6 1 62 375 682 495 132
7 1 126 1190 3248 3731 2002 429
8 1 254 3628 14062 23020 18928 8008 1430
9 1 510 10805 57516 127029 144024 91392 31824 4862

10 1 1022 31740 227030 654395 968544 828495 426360 125970 16796
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Let us note that each moment is a polynomial in :, so that in par-
ticular it does not exhibit any singularity at the percolation or localization
transition. This is not very surprising, because by the general algorithm
(any N and p) +k is computed by exploring connected subgraphs with at
most k sites of the random graph. But as noted before a finite connected
induced subgraph of a random graph at fixed : is a tree with probability 1.
To see any trace of a transition, one would have to look at the behavior
of +2k for large k. For instance, we tried to see if complex zeroes of +2k in
the variable : (or other related quantities) have a tendency to accumulate
near the real axis. We have found no conclusive evidence. The rapid growth
of the coefficients Ik, l makes a numerical study up to k=50 difficult, even
if we know all numbers exactly.

5.5. Bounds for Ik, l

In this section, we will show that Ik, l , the number of normalized
2k-plets associated to trees with l edges satisfies the bounds

Sk, l�Ik, l�ClSk, l (9)

where Cl are Catalan numbers defined by

Cl=
(2l )!

l ! (l+1)!

and Sk, l are Stirling numbers of the second kind (i.e., the number of ways
of partitioning a set of k elements into l non-empty subsets) which can be
computed with the formula

Sk, l=
1
l !

:
l

m=0

(&1) l&m \ l
m+ mk. (10)

Let W be a normalized 2k-plet associated to a tree T. We view W as
a walk on T. Then W allows to put more structure on T. First, the starting
point of the walk turns T into a rooted tree. This allows to talk about sons
of a vertex v, the root being the initial ancestor. Its sons are its neighbors,
and so on. Then W also endows the sons of a vertex with an ordering: the
order of first visit. This means that W naturally endows T with a structure
of plane rooted tree, with the convention that the root is at the top of the
tree, and the elder son is always the leftmost one. Then,

Ik, l=:
Tl

Ik(Tl )
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where the sum runs over the plane rooted trees Tl with l edges, and Ik(Tl )
is the number of admissible walks on Tl with 2k steps, where admissible
means starting and finishing at the root of Tl and visiting all the l+1
vertices by respecting the order of birth among brothers (i.e., a vertex can
be visited only if its brothers on its left have been visited before).

First, we will prove that Ik(T C
l )=Sk, l for a particular tree��the

star-like tree��which gives the lower bound of Eq. (9). Then, we will prove
that

Ik(Tl )�Sk, l (11)

for any tree Tl . As the number of plane rooted trees with l edges is Cl (see,
e.g., ref. 24), this gives the upper bound of Eq. (9).

The star-like tree T C
l is made of a root r and l sons: [s1 , s2 ,..., sl ], see

Fig. 7. If l=0, then Ik(T C
0 )=$k, 0=Sk, 0 . So we consider now that l�1. All

the normalized 2k-plet associated to T C
l can be written as (r, sv(1) , r,

sv(2) ,..., r, sv(k)) where v is an onto map from [1, k] to [1, l ], because an
admissible walk is made of k successive double-steps from r to a son and
return, and visits all the sons. The inverse map v&1 makes a partition of
[1, k] into l non-empty subsets: v&1( j )=[i | 1�i�k; v(i )= j ] for j # [1, l ].
Conversely, such a partition gives a admissible walk, because the targets j
associated to each subset are uniquely determined by the birth rule, with
the following process: the subset containing 1 is labeled by j=1 and
removed, the subset containing the smallest remaining number is labeled
by j=2 and removed, etc, up to the last subset labeled by j=l. This is a
one-to-one correspondence between the admissible walks and the partitions
of [1, k] into l non-empty subsets, which are counted by Stirling numbers
of second kind. Hence, Ik(T C

l )=Sk, l for the star-like tree T C
l .

Let us now consider a given plane rooted tree Tl with l edges. So
Eq. (11) is true for k<l because Ik(Tl )=0 (the walk is too short to visit
all the edges), and for k=l because Il (TI )=1=Sl, l (an admissible walk
on Tl of length 2l exists and is completely determined by the birth rule).
Note that this implies that Il, l=Cl . For k>l, we will prove Eq. (11) by
induction, assuming Eq. (11) to be true for every (k$, l $) when k$<k.

Fig. 7. Labels of vertices of the ``star'' tree T C
l .
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Let r be the root of Tl and r$ the leftmost son of r. As shown on Fig. 6,
we break Tl in three parts, the edge [r, r$], the sub-tree T $ with root r$ and
l $ edges and the rest T", which is a sub-tree with root r"=r and l" edges.
We have l=l $+l"+1. An admissible walk W on Tl with 2k steps is com-
posed of 2k$ steps on T $, 2k" steps on T" and 2m� steps on the edge [r, r$],
with k=k$+k"+m� and m� �1.

If T is a plane rooted tree, we call Ik, m(T ) the number of admissible
walks on T with 2k steps and m returns to its root, and define

Hk, m� (T )# :
k

m=1

Ik, m(T ) \m+m� &1
m� &1 + .

The arguments used to establish Eq. (8) can be repeated to show that

Ik(Tl )= :
m� +k$+k"=k

m� , k$, k"

Hk$, m� (T $) Hk", m� (T"). (12)

Now

Hk$, m� (T $)� :
k$

m$=1

Ik$, m$(T $) \k$+m� &1
m� &1 +=Ik$(T $) \k$+m� &1

m� &1 +
and by the induction hypothesis, the last term is at most

Ik$(T C
l $ ) \k$+m� &1

m� &1 + .

But this is precisely Hk$, m� (T C
l $ ) because for each walk on T C

l $ , m$=k$.
Hence, Hk$, m� (T $)�Hk$, m� (T C

l $ ). As the same argument holds for T", Ik(Tl )
�Ik(T CC

l $, l") where T CC
l $, l" , is the ``bi-star'' tree with T $=T C

l $ and T"=T C
l" .

It remains to show that Ik(T CC
l $, l")�Sk, l $+l"+1 . If l $=0, it is true

because the bi-star is simply the star T C
l . As Eq. (12) is symmetric by

exchange between T $ and T", it is also true for l"=0 because Ik(T CC
l $, 0)=

Ik(T CC
0, l $)=Sk, l .
So we have just to consider the case l $�1 and l"�1. The vertices of

the bi-star are labeled as shown on Fig. 8. The admissible walks are divided
in two classes: (I) the walks finishing by a step on the right subtree T C

l" and
(II) the walks finishing by a step from r$ to r".

For a walk W of class (I), we call W - the walk W without the two last
steps; W - is made of 2k&2 steps. The class (I) is divided in two sub-
classes: (I1) W - has not visited all the vertices. Then W=(W -, r", b l") and
W - is an admissible walk on T CC

l $, l"&1 . (I2) W - has visited all the vertices.
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Fig. 8. Labels of vertices of the ``bi-star'' tree T CC
l $, l" .

Then W - is an admissible walk on T CC
l $, l" and there is l" choices to built W

from W -. In total, the number of walks of class (I) is Ik&1(T CC
l $, l"&1)+

l"Ik&1(T CC
l $, l"), bounded above by Sk&1, l&1+l"Sk&1, l .

For a walk W of class (II), we call W - the walk W with the first and
last steps removed. Then W - is made of 2k&2 steps, starting and finishing
at r$ (and not r) and covering the bi-star. The delicate point is the moment
of its first visit to r. We have l $+1 sub-classes. In sub-class (II0), the first
visit of r is before the first visit of a1 . In sub-class (IIi ) with 1�i�l $,
the first visit of r is after the first visit of ai and before the first visit
of ai+1. In sub-class (IIl $), the first visit of r is after the first visit of al $ . By
using the birth rule, each sub-class corresponds to the admissible walks on
one of the plane rooted trees with l edges drawn on Fig. 9. For each of these
l $+1 trees, the number of steps is 2k&2, so that the induction hypothesis
applies. Hence, for class (II), the total number of walks is bounded above
by (l $+1) Sk&1, l . Then, Ik(T CC

l $, l")�Sk&1, l&1+(l"+l $+1) Sk&1, l=
Sk&1, l&1+lSk&1, l . But, the Stirling numbers obey to the recursion relation
Sk, l=Sk&1, l&1+lSk&1, l , so that we have reached our goal: Eq. (11) is
proved and Eq. (9) follows.

We can now establish two important features of the eigenvalue dis-
tribution d\: : it's support is unbounded, but it Fourier�Laplace transform
is an entire function, and in particular, the distribution of eigenvalues is
determined by its moments.

Fig. 9. The l $+1 plane rooted trees corresponding to the class (II).
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By using the property of Stirling numbers nk=�n
l=0 Sk, lnl

� and by
summing it with � xn�n!, one obtains

Sk(x)# :
k

l=0

Sk, lx l=e&x :
�

n=0

nk

n !
xn.

This leads to a crude bound for the Stirling polynomials when x is real
positive. In fact, S0(x)=1, S1(x)=x, S2(x)=x2+x and for k�3, Sk(x)<
kk+ex(k&1) because for k�3 and any n, nk<kk+kn.

To see the unboundedness of the support of the eigenvalue distribution,
we observe that the Stirling polynomials Sk(:) are the moments of even
order of the even :-dependent probability measure (e&:�2) ��

n=0 (:n�n !)
($(x&- n)+$(x+- n)) on the real line. The support of this measure is
clearly unbounded. As the moments of d\: are larger than the Stirling poly-
nomials, the support of d\: has to be unbounded.

To see the properties of the Fourier�Laplace transform, we just show
that term by term expansion of �+�

&� d\:(*) es* in powers of s leads to
a series with infinite radius of convergence. For this, we just need to
bound �+�

&� d\:(*)(*2k�(2k)!)=+2k �(2k)!. We know that this is at most
CkSk(:)�(2k)!=[1�(k ! (k+1)!)] Sk(:). We have seen than for k�3 this
is less than (kk+e :(k&1))�(k ! (k+1)!) which for large k behaves like
ek�(- 2?k (k+1)!)=o(R&k) for any R. So, in principle, the knowledge of
the moments determines the probability distribution d\: . However, it is
not easy to extract accurate local information on d\: from the knowledge
of a finite number of moments.

5.6. Special Values

Equation (8) can be used to compute Ik, l for special cases. This is best
done using generating functions. Instead of giving the details, let us just
note that this leads to closed forms for Ik, l for fixed l and any k or for fixed
k&l and any l, leading to a a satisfactory description of the borders of the
table of moments. For k=0, I0, l=$0, l . For k�1, the first cases are:

Ik, 0=0

Ik, 1=1

Ik, 2=2k&2

Ik, 3=3k&1+|k+|� k&3 } 2k+2

with |+|� =3 and ||� =1.
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On the other border

Il, l =
(2l )!

l ! (l+1)!
=C l ,

Il+1, l =
(2l+2)!

(l&1)! (l+3)!
,

Il+2, l =
(2l+4)!

(l&1)! (l+6)!
l 2+11l+2

2
,

Il+3, l =
(2l+6)!

(l&1)! (l+9)!
l 4+32l 3+323l 2+232l&48

6
.

That Il, l is just the Catalan numbers is not surprising for two reasons.
First combinatorially, for any plane rooted tree with l edges, Il (Tl)=1,
so Il, l=Cl , the number of plane rooted trees. Second, we know that for
fixed p, the distribution of eigenvalues is governed by the semicircle law.
It is not surprising that when : goes to infinity, the same distribution reap-
pears. Indeed, the fact that Il, l=Cl is equivalent to the fact that the typical
size of eigenvalues is - :, and that after the rescaling *=- : x, d\:(*) con-
verges to semicircle law 1�2? - 4&x2 dx, for which the even moments are
the Catalan numbers.

The above equations are reminiscent of the meanders problem.(8) In
particular, we observe that diagonals of Table I verify

Il+u, l=
(2l+2u)!

(l&1)! (l+3u)!
P2u&2(l )

u!

where P2u&2(l ) is a polynomial with integer coefficients and with leading
term l 2u&2. By conjecturing this form, the coefficients could be determined
for the first values of u, from the exact knowledge of the first Il+u, l .
Unfortunately, we know no general formula for Ik, l .

The asymptotics of Ik, l for fixed l�2 and large k are governed by a
simple relation,

Ik, lt2Sk, lt2
l k

l !
. (13)

As explained in Section 5.5, Ik, l=�Tl
Ik(Tl), and Ik(Tl) is maximal

for the star tree T C
l as for the bi-star tree T CC

l&1, 0 (isomorphic to the
star but with a leaf as root), with Ik(T C

l )=Ik(T CC
l&1, 0)=Sk, l . Hence,

Ik, l�2Sk, l for l�2. But, for l fixed, we will show that Ik, l is asymptotic
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to this lower bound when k is large, because among all the Cl plane rooted
trees, the contributions of T C

l and T CC
l&1, 0 become dominant. Equation (10)

says that Sk, ltl k�l ! for large k.
Let M be the incidence matrix of a given plane rooted tree Tl with l

edges: the number of admissible walks with 2k steps, Ik(Tl), is bounded
above by Tr M2k which counts the closed walks on T with 2k steps. So Tl

contributes for large k only if the Perron�Frobenius eigenvalue of M is not
smaller than - l .

A tree can be bicolored: if we use black (B) and white (W) as the
colors, each vertex is either black or white, in such a way that edges con-
nect only vertices with opposite colors. Then, for an eigenvector , with
eigenvalue *, the vector ,$, defined by ,$i=,i on black vertices and &, i on
white vertices, is eigenvector associated to eigenvalue &*. Hence, the
spectrum is symmetric.

As Tl has l edges, Tr M2=�i, j M 2
i, j=2l, and for the spectrum of M,

�i *2
i =2l. We see that Tl contribute only if its spectrum is [&- l , 0, - l ]

where 0 is l&2 times degenerated. By noting 8 the Perron�Frobenius
eigenvector, associated to - l , and 8$ the eigenvector associated to &- l ,
in this case

Mi, j=- l (8i8j&8$i8$j ).

As 8$ is obtained by inverting the signs of 8 on white vertices, Mi, j=0
when i and j have the same color and Mi, j=2 - l 8i 8j when i and j have
different colors. The Perron theorem assures that 8i>0 for all i. Hence,
Mi, j=1 when i and j have different colors. As loops are forbidden in a tree,
one of the colors must color only one vertex. So M must be the incidence
matrix of a tree isomorphic to the star T C

l , which prove Eq. (13).
Using the saddle point approximation, it is not difficult to show that

for large k and l with k�l fixed, Sk, l grows faster than any exponential
of l. In this regime, log Ik, ltlog Sk, l because log Cltl log 4<<log Sk, l .
But the asymptotics of Ik, l seem much more complicated.

6. CONCLUSION

In this paper we have made a detailed study of the spectral density of
large random graphs incidence matrices, both in the fixed edge probability
p and in the fixed average connectivity : limits.

For fixed p, our results are:

v A simple general algorithm to compute arbitrary moments (poly-
nomials in N and p), easy to implement on a computer (but of almost
factorial growth), leading to an explicit form for the first 18 moments.
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v Numerical diagonalizations of Monte Carlo samples of random
matrices and analytical arguments to show that when the random signs are
not chosen with a symmetric probability, the main change is that a ``Perron
Frobenius'' eigenvalue has to be eliminated to recover the semicircle law
and the GOE results.

For fixed : (the finite connectivity limit), our main contributions are:

v Numerical diagonalizations of Monte Carlo samples of random
matrices for different values of :, with a curious observation for :&2.7.

v A general proof that the spectrum contains delta peaks at all eigen-
values of tree incidence matrices, and that, slightly surprisingly, they
receive non-vanishing contributions even from the infinite cluster when
:>1.

v A recursion relation of combinatorial origin to compute the
moments. Odd moments vanish, and we have explicitly computed the first
120 even moments with the help of a computer. Our algorithm counts
objects which are related to many other tree enumeration problems of inde-
pendent interest.

v A proof that the growth of the moment is slow enough so that they
determine the spectral distribution entirely.

v The moments are insensitive to the random signs, and so is the
spectrum by the previous remark.

v The moments are polynomials in :. In particular, they do not
exhibit any singularity at the classical or quantum percolation transitions.

v However, we have given a general formula (7) to prepare the
ground for a more refined study(3) of the delta peak at the eigenvalue *=0
in the spectral distribution. This delta peak is directly relevant to quantum
percolation and is non-analytic in : at :=e, which we believe is connected
to the curious numerical observation at :&2.7 mentioned above.

One of the natural continuations of this work would be a careful
numerical and�or analytical study of moments of large order, to see if the
percolation transitions have a measurable impact on global characteristics
of the spectral density.

From a more mathematical point of view, and because of their close
connection with delta peaks in the spectra of random graphs, it might be
of interest to be able to characterize the eigenvalues of tree incidence
matrices of a given size and how their distribution and spacings evolve for
large sizes.
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APPENDIX. RANDOM LAPLACIAN MATRIX

In this appendix, we give results for the Laplacian matrix on random
graphs. These are obtained using an adaptation of methods previously
described.

The random Laplacian matrix L of size N is defined as L=D&M
where M is a random incidence matrix (see Section 2) with vanishing
diagonal elements and D is the diagonal matrix whose element Dii=
�j{i Mij is the connectivity of the vertex i in the random graph associated
to M. So all rows or column sums of L vanish.

The Perron�Frobenius theorem applies to N&L: the Perron eigenvec-
tor is the uniform eigenvector (1,..., 1)T, associated to the eigenvalue *P=0
for L. It follows that the spectrum of L is real and non-negative. Moreover
the multiplicity of 0 is the number of connected components.

To compute Tr Lk, the method explained in Section 3.1 is adapted
to the Laplacian. After expanding (D&M )k, and eventually using the
invariance of the trace by cyclic permutation, we must compute several
terms individually. Of course, the diagonal elements Dii need a special
treatment. With the trick Dii=�j{i Mij=�j{i MijM ji , Dii becomes a
double-step (i, j, i ) in the description as a walk on a graph. Now, an
admissible k-plet is made up of single-steps (for M ) and double-steps
(for D). After enumeration,

Tr L=pN 2
� ,

Tr L2=p2N 3
� +2pN 2

� ,

Tr L3=p3N 4
� +(6p2& p3) N 3

� +4pN 2
� ,

Tr L4=p4N 5
� +(12p3&3p4) N 4

� +(25p2&6p3) N 3
� +8pN 2

� .

A computer program can expand these results for a dozen of k. They can
be checked with sum rules: for p=1 the matrix is deterministic and
Tr Lk=(N&1) N k.

For finite N there are in general several connected components, hence
the Perron eigenvalue *P=0 appears with multiplicity. However for fixed
p the random graph is connected in the large N limit, and *P=0 appears
only once. So it is reasonable to consider centered moments mk=(*&*� )k

where the means run on the other N&1 eigenvalues. From previous equations,

m2=2p(1& p) N,

m3=4p(1& p)(1&2p) N,

m4=p(1& p)[ p(1& p)(9N&42)+8] N.
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In the large N limit with p fixed, m3 �m3�2
2 goes to 0 and m4 �m2

2 goes
to 9�4. The limit distribution has a bell-like shape, (5, 7) intermediate
between the semicircle and the Gauss law for which m4 �m2

2 is 2 and 3
respectively.

In the large N limit with := pN fixed, the k-plets contributing to
the dominant term of order N are associated to trees, as described in
Section 5.3. So the k th moment is a polynomial in : of degree k,

+k# lim
N � �

1
N

Tr Lk=:
l

Lk, l: l

where Lk, l is the number of normalized k-plets (with single or double
steps) associated to trees with l edges. Note that now k is not constrained
to be even, due to the double steps. Following the arguments and notations
of Section 5.4, we call Lk, l, m the number of normalized k-plets associated
to trees with l edges and containing m times the number 1 (i.e., with m
return to the root of the associated tree).

In comparison with Section 5.4, as the steps on the first edge [r$, r"]
are single or double, we call u$ (resp. u") the number of such steps finishing
on r$ (resp. r"), i.e., single steps (r", r$) and double steps (r$, r", r$) (resp.
(r$, r") and (r", r$, r")). Then for k�1, Lk, l, m satisfies the recursion relation

Lk, l, m=: Lk$, l $, m$Lk", l", m" \m$+u$&1
u$&1 +\m"+u"&1

u"&1 +\u$+u"&1
u$ +

where the sum runs over non-negative indices k$, k", l $, l", m$, m", u$ and
u" with relations k$+k"+u$+u"=k, l $+l"=l&1 and u"+m"=m, with

Table II. The Number of Normalized 2k-Plets, with Single or Double Steps,
Associated to Trees with l Edges

k"l 1 2 3 4 5 6 7 8 9 10

1 1
2 2 1
3 4 6 1
4 8 25 12 1
5 16 90 85 20 1
6 32 301 476 215 30 1
7 64 966 2345 1722 455 42 1
8 128 3025 10696 11659 4928 854 56 1
9 256 9330 46453 71082 43779 12012 1470 72 1

10 512 28501 195340 404540 342642 135357 26040 2370 90 1
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Table III. Coefficients L (c)
k, l of the Centered Moments of the Random

Laplacian Spectral Distribution

k"l 1 2 3 4 5 6

2 2
3 4
4 8 9
5 16 50
6 32 205 56
7 64 742 574
8 128 2513 3864 431
9 256 8178 21532 6906

10 512 25941 107800 68455 3942
11 1024 80894 504394 540782 90508
12 2048 249337 2255128 3739054 1240360 42136

the convention that the first binomial coefficient must be taken as 1 (and
not 0) when m$=u$=0. To start the recursion relation, we need the
boundary conditions for k=0: L0, l, m=$l$m .

By summing on m, we retrieve the coefficients Lk, l=�m Lk, l, m . The
first of these are given in Table II. As the average +1=: is not zero, we
compute the centered moments mk , which are still polynomial in : of
degree the integer part of k�2. The coefficients L (c)

k, l are given in Table III.
The shape of the distribution evolves with :: in particular, it becomes non-
symmetric as the odd centered moments do not vanish. Again, we observe
that the results for large N with fixed p are found by keeping the last
diagonal of Tables II and III, corresponding to the large : limit.
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